
Execution-Based Model Checking
of Interrupt-Based Systems

Doron Drusinsky1

Naval Postgraduate School
Monterey, CA, USA

ddrusins@nps.navy.mil

Klaus Havelund
Kestrel Technology, NASA Ames Research Center

Moffett Field, CA, USA
havelund@email.arc.nasa.gov

1 CEO of and funded by Time-Rover, Inc., 11425 Charsan Ln., Cupertino, CA 95014, USA. doron@time-rover.com, www.time-rover.com. Time Rover has
developed the runtime verification tools Temporal Rover, ATG Rover and DBRover.

Abstract

Execution-based model checking (EMC) is a verification
technique based on executing a multi-threaded/multi-
process program repeatedly in a systematic manner in or-
der to explore the different interleavings of the program.
This is in contrast to traditional model checking, where a
model of a system is analyzed. Several execution-based
model-checking tools exist at this point, such as for exam-
ple Verisoft and Java PathFinder. The most common for-
mal specification languages used by EMC tools are un-
timed, either just assertions, or linear-time temporal logic
(LTL). An alternative verification technique is Runtime
Execution Monitoring (REM), which is based on monitor-
ing the execution of a program, checking that the execution
trace conforms to a requirement specification. The Tempo-
ral Rover and DBRover are such tools. They provide a very
rich specification language, being an extension of LTL with
real-time constraints and time-series. We show how execu-
tion-based model checking, combined with runtime execu-
tion monitoring, can be used for the verification of a large
class of safety critical systems commonly known as inter-
rupt-based systems. The proposed approach is novel in
that: (i) it supports model checking of a large class of ap-
plications not practically verifiable using conventional
EMC tools, (ii) it supports verification of LTL assertions
extended with real-time and time-series constraints, and
(iii) it supports the verification of custom schedulers.

1 Introduction

Temporal Logic is a special branch of modal logic that in-
vestigates the notion of time and order. Pnueli [9] sug-
gested using LTL for reasoning about concurrent programs.
Since then, several researchers have used LTL to state and
measure correctness of concurrent programs, protocols, and
hardware (e.g., [8]). LTL is an extension of propositional
logic where, in addition to the well-known propositional
logic operators, there are four future-time operators (Even-
tually, Always, Until, Next) and four, dual, past-time op-
erators. Metric Temporal Logic (MTL) was suggested by
Chang, Pnueli, and Manna as a vehicle for the verification
of real-time systems [2]. MTL extends LTL by supporting
the specification of relative time and real-time constraints.
All four LTL future time operators can be constrained by
relative time (cycles) and real-time constraints specifying
the duration of the temporal operator. This paper describes
an additional extension to LTL and MTL suitable for the
specification of time-series requirements such as stability,
monotonicity, temporal average and sum values, and tem-
poral min/max values. It is then suggested how to combine
execution-based model checking with runtime execution
monitoring of properties in this logic to verify event-driven
interrupt-based software systems.

Execution-based model checking (EMC) is a technique for
exploring the possible interleavings of a multi-

mailto:doron@time-rover.com

threaded/multi-process program by executing the program
repeatedly in a systematic manner, exercising a new inter-
leaving for each new repetition. This is in contrast to tradi-
tional model checking, where a model of a system is exer-
cised systematically. Verisoft [6] is an example of an EMC
system, which repeatedly executes a program on its existing
execution platform, using partial order reduction techniques
to avoid re-executing the same interleavings. Java Path-
Finder (JPF) [1] is another example, which uses a special
JVM as execution platform, and a memory of “visited
states” to avoid re-executing interleavings. The specifica-
tion languages used by such systems are usually restricted
to propositional linear temporal logic at the best, not allow-
ing the statement of real-time properties. LTL formulae are
translated into Buchi-automata that are exercised together
with the executing program. One common way of analyz-
ing an application is to define an environment generator,
which non-deterministically assigns values to variables that
are used by the application, or that non-deterministically
generates events to the application in case it is event-
driven. Typically EMC suffers from an exponential blow-
up in the number of possible interleavings as a function of
the number of potentially concurrent processes being veri-
fied. This is partly due to the fact that traditionally, EMC
considers the worst-case scenario, where all interleavings
are considered. Techniques are applied (such as partial or-
der reduction) to reduce this number, but the starting point
is that all interleavings should be analyzed. In the context
of embedded systems, this assumption can be relaxed, as
we shall describe.

Runtime Execution Monitoring (REM) is a class of meth-
ods of tracking the temporal behavior of an underlying ap-
plication. REM methods range from simple print statement
logging methods to run-time tracking of complete formal
requirements (e.g., written in LTL/MTL) for verification
purposes. Indeed, first applications of REM were verifica-
tion oriented where REM was used to track how formal
specification requirements are conformed to by the actual
executing system. Temporal Rover [3] and, more recently,
Java PathExplorer [7], are such systems. Recent adaptations
of on-line REM methods enable run time monitoring for
non-verification purposes such as temporal business rule
checking and temporal security rule checking [4].

Event-driven interrupt-based software systems consist of a
collection of tasks, an interrupt system, and a scheduler.
Tasks execute based on a schedule pattern defined by the
scheduler, and are interrupted from time to time by external
stimuli manifested as interrupts. Upon interrupt, given the
specific composite state of the interrupt system (manifested
by interrupt priority levels and interrupt masking setup), a
corresponding task is enabled for execution by the sched-
uler. Hence, conventional timesharing based concurrency

can be considered as a special-case of an interrupt-based
system which consists of a single event (the system clock)
and an invisible time-sharing scheduler. Conventional
EMC tools do not attempt to model the system clock in the
environment generator, nor do they model the scheduler as
part of the underlying program. Rather, they assume the
worst by exercising all possible interleavings of potentially
concurrent tasks. Note that unlike desktop or workstation
concurrent programs where processes are by definition
concurrent, tasks may or may not be concurrent depending
on the particular sequence of interrupts that triggers the
system during execution; in fact, tasks might be both con-
current and sequential during the same execution. For ex-
ample, two equal priority interrupt driven tasks, task1 and
task2, triggered by external events event1 and event2, re-
spectively, are concurrent if event1 fires while task2 is exe-
cuting, but might be sequential is event1 fires after task2
completes its invocation and before it is invoked again due
to a successive event2 event.

2. Temporal Rover, Real-Time Constraints and Time
Series

Temporal Rover [3] uses runtime monitoring of LTL aug-
mented with real-time constraints (MTL) and time-series
constraints. With MTL, each temporal operator is poten-
tially qualified by a real-time constraint, such as ‘Al-
ways<20commandResult>0’, which means that ‘com-
mandResult>0’ must hold every cycle until 20 real-time
units in the future. MTL with time-series extends MTL to
cater for the specification of relative values of variables and
measurements. For example, consider an automotive cruise
control application with an embedded Temporal Rover sta-
bility assertion requiring “speed to be 5% stable while
cruise is set and not changed”:

TRAssert{

 Always

 ({cruiseSet} ->

 {speed*0.95 < speed' &&

 speed' < speed*1.05}

 Until $speed$

 {cruiseChange || cruiseOff}

)

}

In this example speed is a temporal data variable, which is
associated with the Until temporal operator. This associa-
tion implies that every time the Until operator begins its
evaluation, possibly in multiple instances (due to non-
determinism), the speed value is sampled and preserved in
the speed variable of this instance of the Until; this value is

referred to as the pivot value for this Until node instance.
Future speed values used by this particular evaluation of
the Until statement are referred to using the prime notation,
i.e., as speed'. Hence, if the speed value was 100Kmh when
cruiseSet is true, then the pivot value for speed is 100,
while every subsequent speed is referred to as speed' and
must be within 5% of the pivot speed value. Time series
constants enable the specification of important categories of
requirements such as stability, average, and min-max val-
ues.

The DBRover [4] is a remote version of the Temporal-
Rover whereby assertions are monitored on a remote ma-
chine, using HTTP, sockets, or serial communication with
an underlying client/target application. The DBRover in-
cludes a graphical temporal rule editor, a temporal rule
simulator, and a temporal rule execution engine based on
the TemporalRover code generator. In run-time, the
DBRover listens for messages from client application(s)
and evaluates corresponding temporal assertions. DBRover
monitoring is performed on-line, namely, the DBRover
operates in tandem with the target program, and re-
evaluates assertions every cycle while not storing an ever-
growing history trace.

3. Execution-Based Model Checking of Interrupt-

Based Systems

Fig. 1 illustrates the architecture for EMC of interrupt-
based systems. In this configuration, EMC is performed on
the target board; the environment generator communicates
with the target board using the same interface (for event
interrupts and data), as does the real environment. The en-
vironment generator and the target execute in real-time,
where the environment generator generates real-time stim-
uli for the target. The environment generator in this archi-
tecture differs from the environment generator of tradi-
tional EMC systems in that:

1. The environment generator executes in real-time and is
also extended with delay commands, thereby enabling
environment programs to generate their stimuli accord-
ing to a real-time plan. Traditional EMC does not
model real-time constructs in the environment, and
does not mimic the environment in real-time.

2. The environment generator generates events instruct-
ing (via interrupts) the embedded scheduler to fire cer-
tain tasks with particular timing. This empowers the
tester to generate event sequences that force varying
patterns of concurrency. For example, consider the
two-task example provided in the introduction. Con-
sider that each task executes for less than one second;
the tester might know that event2 cannot, under certain
circumstances, fire within one second after event1 and

that consequently task2 cannot interrupt task1; all the
tester needs to do is to force this real-time constraint in
the event generation segment of the environment
generator. In contrast, traditional EMC does not model
the scheduler or real-time. Hence, to achieve similar
performance using traditional EMC, a tester needs
analyze the system and conclude that the tasks cannot
be concurrent, and then rely on complicated
programming of process priority levels to achieve the
same effect.

3. Since EMC is performed on the target system in real-
time, using real interrupts, a real scheduler, and real in-
terrupt system, it enables the verification of interrupt
latency requirements (i.e., requirements pertaining to
the delay between interrupt detection time and the time
a corresponding service task fires).

H
p
sy
en
fi
te
ro

N
ti
fi
o
fo
sc
tr
in
m

Figure 1. UML component diagram for EMC of
Interrupt-based systems
ence, Fig. 1 illustrates the application of EMC as a so-
histicated test generator for embedded interrupt-based
stems. Having external events represented as part of the
vironment program enables a focused and effective veri-

cation effort where environment programs reflect the
ster’s knowledge of the embedded system and the envi-
nment.

ote that conventional EMC verification time is exponen-
al in the number of potentially concurrent tasks to be veri-
ed. Many embedded system programs, however, consist
f ten or more (possibly small) tasks. Therefore, the brute
rce approach taken by conventional EMC tools does not
ale well when applied to such embedded systems. In con-
ast, having the ability to check specific interleavings us-
g event generation in the environment generator enables
ore efficient verification of such systems.

Unlike non-embedded software, where process scheduling
is for the most part invisible to the programmer, embedded
system programs often include custom schedulers. An em-
bedded custom scheduler is responsible for scheduling
event-tasks based on pending, yet un-serviced, interrupts as
well as periodic background tasks. Note how the suggested
architecture enables explicit modeling of the scheduler.
Hence, a novel feature of the suggested architecture is its
ability to verify custom schedulers; in contrast, traditional
EMC must either assume the worst, i.e., that all possible
interleavings of all tasks need to be verified, or must use
the priority system to programmatically induce the same
effect, resulting in a program that is behaviorally different
than the original, thereby discrediting the verification ef-
fort.

On the verification side of Fig. 1, the architecture incorpo-
rates REM of LTL augmented with real-time and time-
series constraints, as described in section 2 and [5]. Real-
time measurements are provided to the REM tool from the
embedded real-time system, enabling the REM tool to per-
form real-time constraint evaluation for temporal asser-
tions.

4. Conclusion

Embedded real-time applications pose unique challenges to
the verification community. In these systems, real-time
issues, such as correctness of the scheduler, and event-
response latencies, are all of primary concern. Neverthe-
less, EMC can be effectively used to verify such systems,
provided that it is used in a specific manner and combined
with REM of specifications augmented with real-time con-
straints.

References

1. G. Brat, K. Havelund, W. Visser - Model Checking Pro-
grams, Proc. 15th IEEE International Conference on Auto-
mated Software Engineering (ASE), IEEE CS Press.

2. E. Chang, A. Pnueli, Z. Manna - Compositional Verification
of Real-Time Systems, Proc. 9'th IEEE Symp. On Logic In
Computer Science, 1994, pp. 458-465.

3. D. Drusinsky - The Temporal Rover and ATG Rover. Proc.
Spin 2000 Workshop, Springer Lecture Notes in Computer
Science, 1885, pp. 323-329.

4. D. Drusinsky, J. Fobes - Real-time, On-line, Low Impact,
Temporal Pattern Matching, 7th World Multi-conference on
Systemics, Cybernetics and Informatics, Orlando FL, 2003;
accepted for publication.

5. D. Drusinsky - Monitoring Temporal Rules Combined with
Time Series, Computer Aided Verification Conference 2003;
accepted for publication.

6. P. Godefroid Model Checking for Programming Languages
using VeriSoft, Proc. of the 24th ACM Symposium on Prin-
ciples of Programming Languages, pp. 174-186, 1997.

7. K. Havelund, G. Rosu - Monitoring Java Programs with
Java PathExplorer, Proc. of the 1st International Workshop
on Runtime Verification (RV’01), Elsevier Science, Elec-
tronic Notes in Theoretical Computer Science 55(2), pp. 97-
114, 2001.

8. Z. Manna, A. Pnueli - Verification of Concurrent Programs:
Temporal Proof Principles, Proc. of the Workshop on Logics
of Programs, Springer LNCS, 1981 pp. 200-252.

9. A. Pnueli - The Temporal Logic of Programs, Proc.18th IEEE
Symp. on Foundations of Computer Science, pp. 46-57,
1977.

	Introduction

